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Abstract. We present a numerical simulation leading to the formation of  intense magnetic filaments of kinetic Alfvén waves

(KAWs) in steady state when the nonlinearity arises due to ponderomotive effects and Joule heating. When the plain KAW is

perturbed by a transverse perturbation and the magnitude of the pump KAW changes, chaotic filamentary structures of

magnetic field have been observed. At higher KAW pump wave amplitude, the spectra approaches near the Kolmogorov 

53k

scaling at small spatial scales which steepens to a ~ 

2k

 form towards larger spatial scales. The motion is found to be

quasiperiodic and chaotic for different parametric regimes. Relevance of these studies in magnetosphere and solar wind  for

particle acceleration has also been pointed out.

                                                

Index Terms.   Alfvén waves, chaos, magnetic filaments, magnetosphere, solar wind.
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1. Introduction

       In space physics the nonlinear properties of finite

amplitude Alfvén waves are of great interest, largely due to

the fact that there have been a great many observations of

these waves in the solar wind, and in the Earth’s

magnetosphere and ionosphere. Many have studied the Earths

space environment including formation of discrete auroral

arcs (Atkinson, 1970; Miura and Sato, 1980), and generation

of MHD waves and field line resonance (Laysak, 1991). At

the equatorial magnetosphere, where the magnetospheric

plasma is hot and the electron thermal speed exceeds the

Alfvén speed (

teee v mv

), the kinetic Alfvén wave

(KAW) is the appropriate limit. The KAW appears in an

i n t e r m e d i a t e  b e t a  p l a s m a  w i t h() 008 eimmn

.

      Cluster spacecraft observations (Sundkhvist et al., 2005)

in the high altitude cusp found KAWs with frequencies less

than the ion gyrofrequency and non-potential ion-cyclotron

waves (electromagnetic ion-Bernstein waves) above the ion

gyrofrequency. Existence of small-scale, large amplitude

KAWs/spikes at the plasma sheet boundary layer at auroral

regions of altitudes of 4-6 RE were presented from Polar

spacecraft observations ( Wagant, 2000).

        Some observations (Stasiewicz, 1997; Louran, 1994)

by the Freja and  Fast Auroral SnapshoT (FAST) spacecrafts

showed that the physical nature of strong electric spikes in

the auroral ionosphere and magnetosphere, which are

characterized by perturbed electric and magnetic fields can be

explained in terms of KAW.

        The small-scale KAWs are generated from the large

scale Alfvén waves through one or more of varieties of

mechanisms which have been proposed to result in the

filamentation of large amplitude Alfvén waves. Filamentation

of Alfvén waves could become relevant in the observations of

Cluster spacecraft in magnetosheath regions close to the bow

shock (Alexandrova et al. 2004). The present paper focuses

on the filamentation process arising on account of the

coupling between the main KAW and the perturbation that

leads to wave energy concentration in magnetic filaments.

Effect of these coherent structures on particle acceleration has

also been pointed out.

       To develop a fully numerical solution of KAW

filamentation in steady state when the nonlinearity arises due

to ponderomotive effects and Joule heating, the envelope

nonlinear dynamical equation satisfies the modified nonlinear

Schrödinger (MNLS) equation. It turns out that by changing

the parameter governing the pump wave amplitude, this

MNLS equation numerically brings the chaotic structures in

the filamentation process.  

          In particular, the question of how nonlinear Alfvén

waves evolve into Alfvén turbulence has been achieved by

studying the Alfvénic chaos. For nondissipative

(Hamiltonian) Alfvén systems, Hada and Kennel (1990)

showed that the system dynamics near the phase-space

(soliton) separatrix becomes chaotic as the driver amplitude

increases. W. Horoton (1997) studied solar wind driven

dynamics of the magnetosphere and found a highly complex

and chaotic orbits in the ion motion in the high pressure-to-

magnetic pressure reversed field current. The nonlinear

dynamics of KAW turbulence caused by the three-wave

interaction among KAWs and its application to the Earth’s

magnetosphere were studied by Voitenko (1998).  

2. Model Equations

         In an intermediate  (

1eimm

) plasma

magnetized by a uniform ambient magnetic field 

0B

 along

the z direction, the dynamical equation governing the

Nonlinear evolution of Alfvén waves and particle acceleration in space
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propagation (in the x-z plane) of low frequency, long

wavelength, finite amplitude KAW, can be obtained by using

the standard method (Shukla and Stenflo, 1999, 2000;

Shukla and Sharma, 2002; Shukla and Sharma et al., 2004)

and written as()222212102ygByyyyBBBiieBzxxg + ++

        

(1)

 where 

y y k
. is a parameter characterizing the

normalized perpendicular wavenumber in terms of electron’s

collisionless  skin depth, given by()0teAxevvk
                                                           

(2)                                                        
g

 is the

parameter governing the pump wave amplitude. The

normalizing values are    

0 n k

,

ntee xvv

, and                                                      (){}12222001116nAzeBvknT +

where

0xk

(

0zk

)

is the component of the wavevector perpendicular (parallel) to
0

,  

()seic m
 is the ion sound speed,

()0ciicBmc
 is the ion gyrofrequency, c is the speed of

light, 

()2204eecmn
 is the collisionless electron

skin depth,  n0 is the unperturbed plasma number density, Te

represents the plasma electron temperature, 

22ci

,
00exi mkmk

, and 

()ci
 is the KAW frequency.

When 
g

 = 0, equation (1) is reduced to modified NLS

equation, which was studied numerically by the same authors

(Singh and Sharma, 2006). As 
g 0

, however, the

integrability of Eq. (1) is broken and the spatial chaos are

expected.

        When  = 0, Eq. (1) admits the uniform-wave-train

solution()0izysyBzBe
                                                              

(3)

where 

0yB
 are

()121010,ln122yBgg

                                     

(4)

We assume the initial state to be

0yB
.  

       The complex nonlinear evolution of KAW having a

fixed _ at z = 0 and an initial amplitude as()()()0,01cosyyBxBx +

                                     

(5)

is studied by using Eq. (1) in a periodic box. Here

0yB
 is the

amplitude of the homogenous pump KAW,  and  are the

parameters which remain constant in the simulation. Before

proceeding further, one can analyze this evolution in the

linear regime by doing stability analysis. Therefore, this

analysis can be done by following the standard procedure

(Cramer and Watson, 1984).  One can treat this problem as if

we have a uniform plane KAW and perturbation is

superimposed on it. In linearized form, Eq. (1) leads to the

following dispersion relation:
2022222420442e0ygByKKB + +

     

(6)                  

where the spatial propagating dependence is proportional

to

()e pi
. The linear growth rate as a function of

perturbation wave number  can be calculated from()20222022ygByiBe +

                     

(7)        

where 
Ki

. It is obvious that the purely growing case is

recovered when  = 0, provided that the perturbation wave

number  lies in the range     

 

(){}20002expcryyBgB

                       

(8)

The unstable wave number corresponding to the maximum

instability is()2max00expyyBgB
                                               

(9)

3. Numerical Simulation

          We solve Eq. (1) satisfied by KAW numerically, in a

periodic box for the initial conditions of simulation as

specified by Eq. (5).  The pseudo-spectral method of

simulation has been employed for transverse (x-direction)

space integration with periodic length 

x

= , and the

predictor-corrector method for propagation along z-direction

where  is the wave number (

max

) corresponding to the

maximum instability mode. The linear evolution is exactly

integrated which forms an important feature of the code to

accurately reproduce the instability and a fixed step size in z

( z = 5

410

) was used in order to monitor the invariants

of NLS equation to the desired accuracy. The accuracy was

determined by the constancy of the number

2kkNB

when 
0

and 
g

 = 0. During the computation the

conserved quantity was preserved to the order of

510

accuracy. The diagnostics were carried out at every z =

0.01 using 128 grid points. After testing  this algorithm, we

modified it for 
0

and 
g

 0 case of equation (1).

           When
0g

, Eq. (1) becomes more general MNLS

equation which shows nearly integrable dynamics and

irregular solution that exhibits the chaotic motion. The
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results of filament formation of KAW by changing the

parameter g and keeping  (= 0.01) fixed are presented

below.   

          Investigations of nonlinear dynamical systems both

theoretical and experimental have shown that both relatively

simple low-dimensional systems and highly complex infinite

dimensional systems may evolve from a steady state to a

chaotic state as a control parameter is increased.
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Fig. 1. The magnetic field intensity profile of KAW (a) g =

0.001, (b) g = 0.01, (c) g = 0.3, and (d) g = 0.05.

To have a detailed understanding we choose one typical case                                                                                                             

of MNLS equation when
0.1

 , at different 
g

 values.

The magnetic-field intensity profiles of KAW with 
g

 =

0.001, 0.01, 0.03, and 0.05 are shown in Figs. 1(a)-1(d). It

has been observed that magnetic filamentary structures are

formed. Perturbation takes energy from the main KAW by

nonlinear interaction, grows, and finally can form their own

filaments. Therefore, the KAW breaks up into filamentary

structures where the intensity is very high. When 
g

= 0.001

the peaks of the filaments are of almost same intensity. As

we increase the value of
g

, the peaks are of different

intensity as seen from Fig. 1(d) when 
g

 = 0.05. The same

authors have studied recently the filament formation when g

= 0 (Singh and Sharma, 2006). They found that as the value

of the normalized wave number increases from = 0, the

periodicity observed in filament formation was destroyed and

the pattern was complex.

              We construct the phase space diagrams()()0,,0,yyBzdBzdz
 and the results are presented

in Figs. 2(a)-2(d).  As seen in phase space diagram, finite

number of dots with irregular HMO crossings has been

observed. As the value of g increases, infinite number of dots

filling up the substantial portions of phase space has been

observed. The KAW field evolution from coherence to

turbulence is spatially chaotic.

              In order to study the effect of filament formation

on the wave number spectrum, we have studied 

2kB

 against    
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Fig. 2. Phase-space plots of KAW (a) g = 0.001, (b) g =

0.01, (c) g = 0.3, and (d) g = 0.05.

k

 at a fixed x (= 0) value.  Figs. 3(a)-3(d) present the power

spectra 

2kB

 against 

zk

. As the value of g increases, the

negative exponent of k increases and the spectral intensity

confined to lower wave number spreads to higher wave

number. It appears that by further increasing the value of g =

0.05, the spectra approaches near the Kolmogorov 

53k

scaling at small spatial scales which steepens to a ~ 

2k

form towards larger spatial scales.

            In addition, we also measure the largest Lyapunov

exponent. It is seen from Fig. (4) that the largest Lyapunov

exponent is positive for almost all the values of  of g used

here; the system is defined to be chaotic. Thus KAW can

exhibit chaotic dynamics giving rise to a turbulent

component of the magnetic fluctuations.  It shows that the

degree of Alfvén chaos is a function of the parameter g.

        We point out that our results can be quite useful to the

understanding of nonlinear wave filamentation in the

geosynchronous plasma environment (5-10 RE), cusp region

of magnetopause, as well as in the solar wind. First, we

discuss the relevance of our work to the geostationary orbit,

the orbital location where a body holds a fixed position

relative to the rotating Earth, located at 6.6 RE.  The typical

plasma parameters (Garrett and  DeForest, 1979) in this

region are 

0B:

200 nT, 

0n

~10 cm
-3
, T~1 Kev then ~0.1,

Av

~ 1.4  10
8
 cm/s, 

91.310tev

cm/s, 

ci

=19.16 Hz,
61.610

cm. The cusp is an important region in the

Earth's magnetosphere where the solar wind can directly
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Fig. 3. The power spectra of KAW (a) g = 0.001, (b) g =

0.01, (c) g = 0.3, and (d) g = 0.05. The thick line curve

indicates the scaling.
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Fig. 4. Lyapunov exponent versus g.

access the ionosphere, and where large amounts of the plasma

as well as kinetic and electromagnetic energies are

transported. The typical plasma parameters (Sundkvist, 2005)

in this region are 

0B:

 100 nT, 

0n

~ 5 cm
-3
, T=100 ev; then

~0.02, 

v

~ 

79.910

 cm/s, 

84.210tev

, 

ci

=

9.58 Hz, 

610

cm. Outside the Earth’s magnetosphere,

the typical values of several solar wind parameters (Cravens,

2004) as measured by Helios 2 at 1 AU are 

0B:

 6 nT, 

0n

~

3 cm
-3
, T=  10ev; then ~0.335, 

Av

~ 7.7

610

 cm/s,

81.310tev

cm/s, 

ci

=0.575 Hz, 

65.410

cm.

The characteristic scale of the filament size for all the three

cases is of the order of  in transverse direction and
3 0

in propagation z-direction for lower value of 
g

and as

the value of 
g

 increases the filament size decreases nearly

half.
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Fig. 5. : Velocity distribution function:  (a) at time =0 and
= 10 for different values of g, (b) magnified view of the

superthermal tail of (a).

          Finally we have studied the evolution of the velocity

distribution function due to localized field structures. The

repeated interaction of the ions with the localized field can be

described by the velocity space diffusion. The evolution of

the velocity distribution function can be described by the

Fokker- Plank equation given by ()ffDvtvv

   (10)



ILWS WORKSHOP 2006, GOA, FEBRUARY 19-20, 2006

where D(v) is the diffusion coefficient defined by2222/1() ()41        4AkikvAkieDvldkEkvmelE

     

(11)

     The value of the |Ek| for continuously changing k can

be found from the overall shape of the Fourier spectrum. We

use the approximate form  |Ek| =  |Ekmin| | kmin/ k |
/2
  where 

is the spectral index and lA is the periodicity length.

Defining the scaled time  = (vthi)
2
/ D0, and normalized the

velocity by thermal velocity (vthi) of ions ,  D(v) by D0  and

f(t,v) by  f(0,0) , the normalized Fokker-Plank  equation can

be written as ()ffDuuu

         

(12)

where D0 is defined by
minmin2201 4kkAiEeDlmv

     

(13)

We proceed to solve the Eq. (12) numerically with the

Maxwellian distribution as the initial condition. Fig. (5)

displays the velocity distribution function at time  = 0 and

for different values of g at  =10. It is evident from the figure

that the localized fields accelerate some ions and thus

populating the super-thermal tail. Also the extent to which

the superthermal tail will be populated is dependent on the g

values.

4. Summary and Discussion

   We have investigated the filamentation instabilities of

large-amplitude, KAWs propagating at an angle to the

background magnetic field. The structures observed in the

magnetosphere and solar wind can be generated by a

nonlinear stage of kinetic Alfvén wave evolution which

produces large scale structures and further collapses

transversely to small scale structures which allows

dissipation processes like ion-cyclotron resonance or Laundau

damping to act, leading to the heating of the plasma.  The

localized fields accelerate some ions and thus populating the

super-thermal tail.
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